Linear Algebra, Winter 2022

List 4

Determinants, inverses, systems

74. (a) Calculate $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{2}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$
(b) Calculate $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{4}=\left[\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right]$
(b) Calculate $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{5}=\left[\begin{array}{ll}8 & 5 \\ 5 & 3\end{array}\right]$
(c) Calculate $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{10}=\left[\begin{array}{ll}89 & 55 \\ 55 & 34\end{array}\right]$
$\hat{*}(\mathrm{~d})$ Looking at $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{2},\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{3}$, etc., guess a formula for $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{n}$.
For any $n \geq 1$, we have $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{n}=\left[\begin{array}{cc}F_{n+1} & F_{n} \\ F_{n} & F_{n-1}\end{array}\right]$, where F_{n} is the $n^{\text {th }}$ Fibonacci number $\left(F_{0}=F_{1}=1\right.$ and $\left.F_{n}=F_{n-1}+F_{n-2}\right)$.

$$
\text { Direct formula: } \frac{1}{\sqrt{5}}\left[\begin{array}{cc}
\phi^{n+1}-\psi^{n+1} & \phi^{n}-\psi^{n} \\
\phi^{n}-\psi^{n} & \phi^{n-1}-\psi^{n-1}
\end{array}\right] \text {, where } \phi=\frac{1+\sqrt{5}}{2} \text { and } \psi=\frac{1-\sqrt{5}}{2} \text {. }
$$

75. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be $T(x, y)=(2 x+y,-x+2 y)$ and let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be $S(x, y)=(3 y,-x)$. Compute $S(T(3,1)) .(-3,-7)$
76. For T and S from Problem 75, give the matrix for T, the matrix for S, and matrix for $S(T(x, y))$.
$M_{T}=\left[\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right], M_{S}=\left[\begin{array}{cc}0 & 3 \\ -1 & 0\end{array}\right], M_{S} M_{T}=\left[\begin{array}{cc}-3 & 6 \\ -2 & -1\end{array}\right]$
77. (a) Is $\left[\begin{array}{cc}2 & 5 \\ 9 & -2\end{array}\right]\left[\begin{array}{l}4 \\ 4\end{array}\right]$ parallel to $\left[\begin{array}{l}4 \\ 4\end{array}\right]$? Yes
(b) Is $\left[\begin{array}{cc}2 & 5 \\ 9 & -2\end{array}\right]\left[\begin{array}{l}2 \\ 5\end{array}\right]$ parallel to $\left[\begin{array}{l}2 \\ 5\end{array}\right]$? No
(c) Is $\left[\begin{array}{cc}2 & 5 \\ 9 & -2\end{array}\right]\left[\begin{array}{l}2 \\ 9\end{array}\right]$ parallel to $\left[\begin{array}{l}2 \\ 9\end{array}\right]$? No
(d) Is $\left[\begin{array}{cc}2 & 5 \\ 9 & -2\end{array}\right]\left[\begin{array}{c}5 \\ -9\end{array}\right]$ parallel to $\left[\begin{array}{c}5 \\ -9\end{array}\right]$? Yes
(e) Is $\left[\begin{array}{cc}2 & 5 \\ 9 & -2\end{array}\right]\left[\begin{array}{c}2 \\ -9\end{array}\right]$ parallel to $\left[\begin{array}{c}2 \\ -9\end{array}\right]$? No
(f) Is $\left[\begin{array}{cc}2 & 5 \\ 9 & -2\end{array}\right]\left[\begin{array}{c}2 \\ -2\end{array}\right]$ parallel to $\left[\begin{array}{c}2 \\ -2\end{array}\right]$? No

The determinant of a square matrix A is written as $\operatorname{det}(A)$. For a 2×2 matrix,

$$
\operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$

For larger matrices, the formula is more difficult. Properties include

$$
\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B) \quad \text { and } \quad \operatorname{det}(s A)=s^{n} \operatorname{det}(A)
$$

if A is an $n \times n$ matrix. Geometrically, $|\operatorname{det}(A)|$ is the volume of the parallelepiped (in 2D, area of the parallelogram) whose edges, as vectors, are the columns of A.
78. Compute the determinants of the following matrices.
(a) $\operatorname{det}\left(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\right)=-2$
(b) $\operatorname{det}\left(\left[\begin{array}{ll}3 & 5 \\ 5 & 9\end{array}\right]\right)=2$
(c) $\operatorname{det}\left(\left[\begin{array}{ll}8 & 4 \\ 6 & 3\end{array}\right]\right)=0$
(d) $\operatorname{det}\left(\left[\begin{array}{cc}3 & -1 \\ 2 & 5\end{array}\right]\right)=17$
(e) $\operatorname{det}\left(\left[\begin{array}{ll}3 & b \\ 2 & 5\end{array}\right]\right)=15-2 b$
(f) $\operatorname{det}\left(\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 9 \\ 5 & 6 & 8\end{array}\right]\right)=25$
$\hat{\imath}(\mathrm{g}) \operatorname{det}\left[\begin{array}{llll}3 & 1 & 3 & 3 \\ 1 & 2 & 4 & 0 \\ 2 & 0 & 2 & 2 \\ 4 & 2 & 1 & 3\end{array}\right]=--12$
79. If M is a 5×5 matrix with $\operatorname{det}(M)=2$ compute $\operatorname{det}(2 M)=2^{5} \cdot 2=64$ and $\operatorname{det}\left(-3 M^{2}\right)=(-3)^{5} \cdot 2 \cdot 2=-972$
The $\boldsymbol{n} \times \boldsymbol{n}$ identity matrix is the matrix I (also written I_{n} or $I_{n \times n}$) such that

$$
I M=M I=M
$$

for any $n \times n$ matrix M. It has 1 along the main diagonal and 0 everywhere else.
80. (a) Multiply $\left[\begin{array}{ccc}0 & -4 & 2 \\ 10 & -1 & 0 \\ 1 & 12 & -6\end{array}\right]\left[\begin{array}{ccc}3 & 0 & 1 \\ 30 & -1 & 10 \\ \frac{121}{2} & -2 & 20\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(b) Multiply $\left[\begin{array}{ccc}0 & -4 & 2 \\ 10 & -1 & 0 \\ 1 & 12 & -6\end{array}\right]\left[\begin{array}{ccc}3 & 0 & 1 \\ 30 & -1 & 10 \\ \frac{121}{2} & -2 & 20\end{array}\right]\left[\begin{array}{ccc}6 & 4 & 9 \\ 0 & -3 & -2 \\ 4 & 6 & -4\end{array}\right]=\left[\begin{array}{ccc}6 & 4 & 9 \\ 0 & -3 & -2 \\ 4 & 6 & -4\end{array}\right]$

The inverse matrix of a square matrix M is written M^{-1} (spoken as " M inverse") and it is the unique matrix for which $M^{-1} M=I$. An inverse matrix exists if and only if $\operatorname{det}(M) \neq 0$. For a 2×2 matrix,

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

For larger matrices, the formula is much more difficult but includes $\frac{1}{\operatorname{det}(M)}$.
81. Find $\left[\begin{array}{cc}5 & 4 \\ 1 & -2\end{array}\right]^{-1}=\left[\begin{array}{cc}\frac{1}{7} & \frac{2}{7} \\ \frac{1}{14} & -\frac{5}{14}\end{array}\right]$ and $\left[\begin{array}{ccc}0 & -4 & 2 \\ 10 & -1 & 0 \\ 1 & 12 & -6\end{array}\right]^{-1}=\left[\begin{array}{ccc}3 & 0 & 1 \\ 30 & -1 & 10 \\ \frac{121}{2} & -2 & 20\end{array}\right]$ from Task 80(a).
82. Find the inverses of the matrices from Task 78, if they exist. ($\sim \mathcal{\sim}(\mathrm{f})$, $\hat{\star}(\mathrm{g})$)
(a) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{-1}=\left[\begin{array}{cc}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right]$
(b) $\left[\begin{array}{ll}3 & 5 \\ 5 & 9\end{array}\right]^{-1}=\left[\begin{array}{cc}\frac{9}{2} & -\frac{5}{2} \\ -\frac{5}{2} & \frac{3}{2}\end{array}\right]$
(c) $\left[\begin{array}{ll}8 & 4 \\ 6 & 3\end{array}\right]^{-1}$ does not exist
(d) $\left[\begin{array}{cc}3 & -1 \\ 2 & 5\end{array}\right]^{-1}=\left[\begin{array}{cc}\frac{5}{17} & \frac{1}{17} \\ -\frac{2}{17} & \frac{3}{17}\end{array}\right]$
(e) $\left[\begin{array}{ll}3 & b \\ 2 & 5\end{array}\right]^{-1}=\left[\begin{array}{cc}\frac{5}{15-2 b} & -\frac{b}{15-2 b} \\ -\frac{2}{15-2 b} & \frac{3}{15-2 b}\end{array}\right]$
$\boldsymbol{\sim}(\mathrm{f})\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 9 \\ 5 & 6 & 8\end{array}\right]^{-1}=\left[\begin{array}{ccc}-\frac{22}{25} & \frac{6}{25} & \frac{7}{25} \\ \frac{29}{25} & -\frac{17}{25} & \frac{1}{25} \\ -\frac{8}{25} & \frac{9}{25} & -\frac{2}{25}\end{array}\right]$
(g) $\left[\begin{array}{llll}3 & 1 & 3 & 3 \\ 1 & 2 & 4 & 0 \\ 2 & 0 & 2 & 2 \\ 4 & 2 & 1 & 3\end{array}\right]^{-1}=\left[\begin{array}{cccc}-2 & \frac{1}{3} & 2 & \frac{2}{3} \\ 1 & 0 & -\frac{3}{2} & 0 \\ 0 & \frac{1}{6} & \frac{1}{4} & -\frac{1}{6} \\ 2 & -\frac{1}{2} & -\frac{7}{4} & -\frac{1}{2}\end{array}\right]$
83. Find the matrix M from Task 59.

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 5 & 3
\end{array}\right]
$$

84. For each of the following, does an inverse matrix exist?
(a) Matrix A, a 3×3 matrix with $\operatorname{det}(A)=3$.
(b) Matrix B, a 3×5 matrix where every number in the matrix is 1 .
(c) Matrix C, a 4×4 matrix where every number in the matrix is 1 .
(d) Matrix D, a 4×4 matrix where every number in the matrix is 0 .
(e) Matrix E, a 5×5 matrix with $\operatorname{det}(D)=-1$.
(f) Matrix F, a 7×7 matrix with $\operatorname{det}(E)=0$.
(g) Matrix G, a 2×2 matrix with $a_{i j}=i+j$.

Only A and E and G have an inverse
85. For what values of p are each of the following matrices invertible? Give a formula for the inverse of each matrix.
(a) $\left[\begin{array}{cc}1 & 2 \\ p & p^{3}\end{array}\right]$ If $p \neq 0, p \neq \sqrt{2}, p \neq-\sqrt{2}$, inverse is $\frac{1}{p^{3}-2 p}\left[\begin{array}{cc}p^{3} & -2 \\ -p & 1\end{array}\right]$.
(b) $\left[\begin{array}{cc}\cos p & -\sin p \\ \sin p & \cos p\end{array}\right]$ Inverse is $\left[\begin{array}{cc}\cos p & \sin p \\ -\sin p & \cos p\end{array}\right]$ (this is clockwise rotation by p).
(c) $\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]-p I_{2 \times 2}$ If $p \neq 4, p \neq-1$, inverse is $\frac{1}{p^{2}-3 p-4}\left[\begin{array}{cc}2-p & -2 \\ -3 & 1-p\end{array}\right]$.
86. Let $f: \mathbb{R}^{2} \rightarrow R^{2}$ be given by $f(x, y)=(9 x-11 y, 4 x-5 y)$. Find values of a and b such that $f(a, b)=(7,2) .(a, b)=(13,10)$
87. Let $f: \mathbb{R}^{2} \rightarrow R^{2}$ be given by $f(x, y)=(5 x, 10 x+y)$. Give a formula for $f^{-1}(x, y)$, that is, the function for which $f^{-1}(f(x, y))=(x, y) \cdot\left(\frac{x}{5},-2 x+y\right)$

A collection of vectors is called linearly dependent if one of the vectors is a linear combination of the others. Otherwise it is linearly independent.
Alternate definition: a collection $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}\right\}$ is linearly dependent if there exist scalars s_{1}, \ldots, s_{n} not all zero (but some may be zero) such that $s_{1} \overrightarrow{v_{1}}+\cdots+s_{n} \overrightarrow{v_{n}}=\overrightarrow{0}$.
88. For the vectors

$$
\overrightarrow{v_{1}}=[2,9,-6], \quad \overrightarrow{v_{2}}=[4,2,-6], \quad \overrightarrow{v_{3}}=[0,-8,3],
$$

is the collection $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right\}$ linearly dependent or independent?
Hint: See Task 28 from List 1.
Because $\overrightarrow{v_{1}}=\frac{1}{2} \overrightarrow{v_{2}}+(-1) \overrightarrow{v_{3}}$, the collection is linearly dependent.
89. Determine whether each collection is linearly dependent or independent.
(a) $\{\hat{\imath}, \hat{\jmath}\}$ linearly independent
(b) $\{\hat{\imath}, \hat{\jmath}, \hat{k}\}$ linearly independent
(c) $\{\hat{\imath}, \hat{\jmath}, \overrightarrow{0}\}$ linearly dependent
(d) $\left\{\left[\begin{array}{c}44 \\ 1\end{array}\right],\left[\begin{array}{c}-9 \\ 21\end{array}\right],\left[\begin{array}{l}21 \\ 49\end{array}\right],\left[\begin{array}{l}8 \\ 8\end{array}\right]\right\}$ linearly dependent
(e) $\left\{\left[\begin{array}{c}15 \\ -35\end{array}\right]\right\}$ linearly independent
(f) $\left\{\left[\begin{array}{c}15 \\ -35\end{array}\right],\left[\begin{array}{c}-9 \\ 21\end{array}\right]\right\}$ linearly dependent
(g) $\left\{\left[\begin{array}{c}5 \\ 50 \\ -100\end{array}\right],\left[\begin{array}{c}0 \\ 100 \\ 200\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$ linearly independent
90. For each, state whether the collection must be linear dependent, must be linear independent, or that there is not enough information to know this.
(a) A collection of 10 vectors each of dimension 3. dependent
(b) A collection of 3 vectors each of dimension 10. not enough info
(c) A collection of 20 vectors each of dimension 10. dependent
(d) A collection of 3 vectors, each of dimension 3, that includes two parallel vectors. dependent
(e) A collection of 3 vectors, each of dimension 3, that includes two perpendicular vectors. not enough info
(f) A collection of 3 vectors, each of dimension 3, where each vector is perpendicular to the other two. independent
(g) A collection of 3 vectors, each of dimension 3, that includes the zero vector. dependent
91. Is the collection of vectors

$$
\left\{\left[\begin{array}{l}
2 \\
5
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
5
\end{array}\right], \quad\left[\begin{array}{c}
-2 \\
1
\end{array}\right]\right\}
$$

linearly dependent or linearly independent? dependent
92. Give an example of a vector \vec{u} for which

$$
\left\{\left[\begin{array}{c}
1 \\
2 \\
-4
\end{array}\right], \quad\left[\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right], \quad \vec{u}\right\}
$$

is linearly independent. Any non-zero vector $[a, b, c]$ that does not have $c=-2 b$ will work. The simplest example is $[0,0,1]$.
93. Write $[8,3,1]$ as a linear combination of $[1,0,1]$ and $[2,0,3]$ or explain why it is impossible to do so. Impossible because $a[1,0,1]+b[2,0,3]=[a+2 b, 0,1+3 b]$ will always have 0 has the second component, but $[8,3,1]$ as a 3 as the second component.
94. Write $[5,5,1]$ as a linear combination of $[1,1,1]$ and $[0,0,8]$ or explain why it is impossible to do so. $[5,5,1]=5[1,1,1]+\left(-\frac{1}{2}\right)[0,0,8]$.
95. (a) Is the collection $\{[-1,8,8]\}$ linearly independent? Yes
(b) Is the collection $\{[-1,8,8],[5,0,0]\}$ linearly independent? Yes
(c) Is the collection $\{[-1,8,8],[5,0,0],[3,1,3]\}$ linearly independent? Yes
(d) Is the collection $\{[-1,8,8],[5,0,0],[3,1,3],[3,-4,4]\}$ linearly independent? No
96. (a) Is the collection $\{[0,2,5]\}$ linearly independent? Yes
(b) Is the collection $\{[0,2,5],[1,1,-4]\}$ linearly independent? Yes
(c) Is the collection $\{[0,2,5],[1,1,-4],[2,4,-3]\}$ linearly independent? No
(d) Is the collection $\{[0,2,5],[1,1,-4],[2,4,-3],[2,8,7]\}$ linearly independent? No

The rank of a matrix is the maximum number of linearly independent rows in the matrix. This is also the maximum number of linearly independent columns.
97. Give the rank of the following matrices: (a) 1, (b) 2, (c) 3, (d) 3
(a) $\left[\begin{array}{lll}-1 & 8 & 8\end{array}\right]$
(b) $\left[\begin{array}{ccc}-1 & 8 & 8 \\ 5 & 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{ccc}-1 & 8 & 8 \\ 5 & 0 & 0 \\ 3 & 1 & 3\end{array}\right]$
(d) $\left[\begin{array}{ccc}-1 & 8 & 8 \\ 5 & 0 & 0 \\ 3 & 1 & 3 \\ 3 & -4 & 4\end{array}\right]$
98. Give the rank of the following matrices: (a) 1, (b) 2, (c) 2, (d) 2
(a) $\left[\begin{array}{lll}0 & 2 & 5\end{array}\right]$
(b) $\left[\begin{array}{ccc}0 & 2 & 5 \\ 1 & 1 & -4\end{array}\right]$
(c) $\left[\begin{array}{ccc}0 & 2 & 5 \\ 1 & 1 & -4 \\ 2 & 4 & -3\end{array}\right]$
(d) $\left[\begin{array}{ccc}0 & 2 & 5 \\ 1 & 1 & -4 \\ 2 & 4 & -3 \\ 2 & 8 & 7\end{array}\right]$
99. Explain why $\operatorname{rank}(M)=3$ for the matrix $M=\left[\begin{array}{lll}4 & 0 & 0 \\ 1 & 3 & 5 \\ 6 & 3 & 2\end{array}\right]$. The column $\left[\begin{array}{l}4 \\ 1 \\ 6\end{array}\right]$ cannot be a linear combination of the other two because they both have a 0 in the first entry.
The column $\left[\begin{array}{l}0 \\ 5 \\ 2\end{array}\right]$ cannot be a linear com. of only $\left[\begin{array}{l}0 \\ 3 \\ 3\end{array}\right]$ because all multiples of $\left[\begin{array}{l}0 \\ 3 \\ 3\end{array}\right]$ have the same y - and z-component. Therefore all 3 columns are linearly independent, so the rank is 3 .

Alternatively, $\operatorname{det}(M)=4 \operatorname{det}\left(\begin{array}{ll}3 & 5 \\ 3 & 2\end{array}\right)-0+0=4(6-15) \neq 0$, and the rank of a 3×3 matrix is less than 3 if and only if its determinant is 0 .
$\mathcal{\sim}$ 100. For which values of p does $\left[\begin{array}{lll}4 & 0 & 0 \\ 1 & 3 & 5 \\ 6 & 3 & p\end{array}\right]$ have rank $2 ? p=5$
For which values does it have rank 3? all $p \neq 5$ Rank 1? None
101. Find $\operatorname{rank}(A)$ and $\operatorname{det}(A)$ for the matrix $A=\left[\begin{array}{ccc}4 & 8 & 1 \\ 7 & 14 & 6 \\ 1 & 2 & 6\end{array}\right]$ without a calculator.
$\operatorname{rank}(A)=2$ because the second column is two times the first column.
$\operatorname{det}(A)=0$ because the rank is less than the number of columns.
102. The rank of $\left[\begin{array}{ccc}4 & 1 & 5 \\ 2 & 0 & 2 \\ 1 & -1 & 0\end{array}\right]$ is 2 and the rank of $\left[\begin{array}{cccc}4 & 1 & 5 & 1 \\ 2 & 0 & 2 \\ 1 & -1 & 2 & 7 \\ 1 & 9 & 7\end{array}\right]$ is 3 .

How many solutions does the system $\left\{\begin{aligned} 4 x+y+5 z & =1 \\ 2 x+2 z & =2 \\ x-y & =7\end{aligned}\right.$ have? None
103. The rank of $\left[\begin{array}{ccc}4 & 1 & 5 \\ 2 & 0 & 2 \\ 1 & -1 & 0\end{array}\right]$ is 2 and the rank of $\left[\begin{array}{cccc}4 & 1 & 5 & 6 \\ 2 & 0 & 2 & 4 \\ 1 & -1 & 0 & 4\end{array}\right]$ is also 2 .

How many solutions does the system $\left\{\begin{aligned} 4 x+y+5 z & =6 \\ 2 x+ & 2 z\end{aligned}\right)=4$ have? Infinitely many
104. The rank of $\left[\begin{array}{ccc}7 & 2 & 5 \\ 9 & 0 & 3 \\ 3 & -1 & 0\end{array}\right]$ is 3 and the rank of $\left[\begin{array}{cccc}7 & 2 & 5 & -1 \\ 9 & 0 & 3 & 0 \\ 3 & -1 & 0 & 5\end{array}\right]$ is also 3 .

How many solutions does the system $\left\{\begin{array}{rlr}7 x+2 y+5 z & =-1 \\ 9 x+3 z & =0 \\ 3 x-y & =5\end{array}\right.$ have? One
\& 105. If the numbers a, b, c, d are such that $(x, y)=(9,1)$ is a solution to $\left\{\begin{array}{l}a x+b y=2 \\ c x+d y=3\end{array}\right.$ but the system $\left\{\begin{array}{l}a x+b y=4 \\ c x+d y=9\end{array}\right.$ has no solutions, what is the rank of $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$? Since the system $\left\{\begin{array}{l}a x+b y=4 \\ c x+d y=9\end{array}\right.$ has no solutions, the rank is <2. Because $\left\{\begin{array}{l}a x+b y=2 \\ c x+d y=3\end{array}\right.$ has at least one solution, $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is not $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and thus the rank is >0. The only integer strictly between 0 and 2 is 1 . (The values 2, 3, 4, 9 are not important.)

